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TEMPERATURE PROFILE IN THE ENTRANCE REGION OF AN
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TURBULENT CONVECTION AND RADIATION
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Abstract—The influence of the absorption of radiation on the temperature profile and heat transfer
to an absorbing medium flowing in an annulus has been examined analytically, In the analysis, a
turbulent, non-gray gas stream with variable density and temperature-dependent absorptioncoefficients
are considered. The results of the analysis are compared with those of an experiment performed with
steam flowing at Reynolds numbers near 20 000 at pressures of 1-0 and 3-22 atm in an annulus with a
radius ratio of 0-2. The analytical result agrees with the experimental result that for an inner wall
temperature of 2000°R and a pressure of 3-22 atm the absorption of radiation increases the temperature
slightly (about 7 per cent). This result is also in qualitative agreement with results of Viskanta’s analysis

for a stagnant fluid in a plane parallel geometry.

NOMENCLATURE

An, expansion coefficients de-
fined in equation (34);

a(T, P), ratio of line width to line
spacing;

a(T, P), dimensionless absorption
coefficients;

B, expansion coefficients de-
fined in equation (53);

B, B}, B}, Planck function for wave

number w, wavelength A,
or the i*® band;

b*, line width;

C, constant;

Cn, Da, expansion coefficients de-
fined in equation (57);

Cpo specific heat at constant
pressure;

e, normalized eddy diffusi-
vity;

F, F®, F®, absorption integrals de-

fined in equations (Cl),
(C2), and (C3), re-
spectively;

t Much of this research was performed at Case
Institute of Technology with the guidance and helpful
advice of Professor Jerzy R. Moszynski and presented as
a Ph.D. thesis.
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Iy, I,

J1, J2,

radiation flux vector;
absorption integrals in
equations (B3) and (B4);
dimensionless net radia-
tion absorption function;
dimensionless net radia-
tion absorption function
defined in equations (BIl)
and (B2);

absorption integrals de-
fined in equations (CS5)
and (C4), respectively;
absorption integral defined
in equation (B3S);
intensity at a surface for a
given wave number;
dimensionless intensity at
a given band on surface
one and surface two for
temperature T*;
dimensionless ratio of
Planck function,
By(T*)/Bmax(T?2);

Bessel functions of zero
and first order of
imaginary argument;
intensity impinging on sur-
face one and surface two;
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mass  absorption  co-

efficient for it band;

thermal conductivity;

length of path for radia-

tion;

radiation interaction para-

meter,
Riomax(TD)BalT2) |

Py ;c; In (T3/T3) (en)max™

mass flow rate;

pressure;

heat transferred;

non-dimensional heat

transferred to absorbing

gas and non-absorbing gas

respectively;

ntt characteristic function

defined in equation (33);

radius of inner and outer

cylinder, respectively;

dimensionless radial co-

ordinate, r*/R3;

radial co-ordinate;

element of path length;

dimensionless path length

s*|Rz, SY/R}, SYR3;

temperature of gas;

temperatures of inner and

outer cylinder, respec-

tively;

dimensionless axial

velocity;

axial velocity;

maximum value of axial

velocity;

radial velocity component;

dimensionless axial co-

ordinate, x*/Rj};

axial co-ordinate;

critical value of axial

velocity;

reduced axial co-ordinate

defined in equation (20);

absorption coefficient for

itk band;

dimensionless ratio of ab-

sorption coefficients,

a(T*)/amax(T'3);

line spacing;

Eh’

el’ Ez’

61, 02, 6}, 65,

Kw’

An

2

£

w,

Awi,

Superscripts

eddy diffusivity for heat
transfer;

emissivity of inner and
outer cylinder;

variable in equation (13):
dimensionless function of
temperature,

InT*—InT;

InT;—In7:’

entrance temperature;
fully developed tempera-
ture profile;
dimensionless tempera-
tures in equation (28);
angles shown in Fig. 6:
mass absorption coeffici-
ent for wave number w:
ntt characteristic value of
equation (21);

dummy variable of inte-
gration;

radius ratio of inner cylin-
der, R}/R3;

density;

density at outer wall;
optical path length for
ith band defined in equa-
tion (A6);

optical path length for
wavelength, A;

expansion coefficients de-
fined in equation (44);
expansion coefficient de-
fined in equation (48);
solid angle;

wave number, 1/A;

band widths for i*® band.

inner surface;
outer surface;
dimensional quantity.

INTRODUCTION

THE INTERACTION of radiant energy with an
absorbing medium has been of engineering
interest for quite some time. Recently, the
interaction of radiant energy with moving
absorbing media, thereby adding another mode
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of energy transfer, has become of interest [1—4].
In contrast to most previous analyses of this
phenomenon, the present study considers the
absorbing medium to be a non-gray gas (that is,
having absorption properties that are dependent
on wavelength) with absorption properties that
depend on temperature. Further, this absorbing
medium is considered under conditions of fully
developed turbulent flow.

Consider the steady flow of a gaseous ab-
sorbing medium in an annular passage with a
fully developed turbulent velocity profile. At
some point the temperature of the inner cylinder
is suddenly increased, while the temperature of
the outer cylinder remains unchanged. The
subsequent development of the temperature
profile and the heat transfer to the gas is the
subject of this study. This development takes
place in a region called the thermal entrance
region. In this region the fluid is assumed to be a
perfect gas subject to the following conditions:
no heat sources, negligible body forces, constant
specific heat, and negligible viscous dissipation.
The temperature profile and the heat transfer
will be calculated not only for an absorbing gas
but also for a non-absorbing gas; in fact, the
solution for the absorbing gas is obtained by
perturbing the solution to the problem for the
non-absorbing gas. This method can be used
quite extensively, because the effects of turbulent
diffusion will be quite large compared with
those due to radiation absorption, except under
conditions of extremely high temperatures and
pressures. For the case of a non-absorbing gas,
the thermal entrance problem will be solved by
an extension of the techniques used in the
Graetz problem in order to take into account a
variable fluid density.

In order to predict the temperature and heat
transfer, the turbulent convection as well as the
radiation absorption must be determined. The
method of describing the turbulence is that
wherein an eddy diffusivity for heat transfer is
introduced [5~7]. This quantity must be de-
termined experimentally for the pertinent flow
conditions. For the present analysis, the eddy
diffusivity is determined from measurements of
the temperature profile in air [8], and this value
is used to calculate the temperature for the
steam.

The method of computing the absorption
properties of steam is the statistical method
described in reference [9). Herein the absorption
is assumed to take place in discrete bands. The
dependence of the absorption on temperature
and pressure is determined from experimental
results [9, 10]. The particular bands to be
considered are determined from spectroscopic
measurements.

ANALYSIS
Derivation of equations

Consider the thermal entrance length problem
for turbulent flow in an annulus. The solution
to this problem involves considering the equa-
tions of mass, energy, and momentum as well as
an equation of state for the fluid. In general,
these equations must be considered simul-
taneously. However, because of their complex
nature, certain simplifying assumptions will be
made herein,

For the thermal entrance length problem where
the velocity profile is fully developed on entering
the heating section, there will still be a velocity
adjustment in the thermal entrance region to
account for the heating and consequent density
change. However, for turbulent flow at a region
somewhat downstream of the entrance to the
heating section, it can be shown experimentally
that the velocity can be separated into a product
of a function of the axial position and a function
of radius as follows:

w* =ul (x*) . u(r*) n

These functions will be determined experi-
mentally for the conditions of interest. An
estimate of the length of the region wherein this
assumption is not valid must be determined; in
this case the determination was experimental.
With the axial velocity profile specified, it is
not necessary to consider the momentum equa-
tion. The energy equation including radial
turbulent diffusion and radiation absorption, but
neglecting axial diffusion, may be written as

oT* oT* 1 2
L P * *_ ) — * *®
P7Cp (v or* +u ax*) r*or* [r k* +

*

oT .
prcyen) 5,—*] =—divF; (2
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and the continuity equation may be written as
a * * a * Kk, % 2
g (r*etv?) + s (rptut) =0 (3)

Except in the term involving the radial
velocity, temperature is the dependent variable
in the energy equation. It will be shown that
even in the thermal entrance length, there is a
region wherein it is possible to neglect the radial
velocity term in the energy equation; i.e.

.. * eT* LT
PPt o < Pt s
so that the temperature will remain as the only
dependent variable. Intuitively, it may be ex-
pected that very close to the entrance region the
radial temperature gradient would be very large,
such that the inequality is not valid. This is in-
deed the case. Consequently, a determination of
the distance x},, it is necessary first to solve the
continuity equation for v*:

re

1 0
P j pre (Wrap®) u(r*yredr* (4

R,

pr* = —

Also, an additional requirement must be satis-
fied, namely, the mass flow rate in the annulus
m* must be a constant, where m* is defined as

Ra*
Tt
m* = 2m uk_ (x*) p} j u(r* )7—;—*—(——3—-7) r*dr*
3)
where the density variation is specified in terms
of the temperature variation. Now uy, may be

expressed in terms of its value at the entrance to
the heated section uy,, 4 as

Ry
Ju(r*) r*dr*

Ry*

max(x*) = umax

y u(r*) [TH{T*(e*, r¥)] r* dr*
’ ®)

Hence, p*v* can be estimated once 7* and u*
are known as functions of r* and x*. From
experimentally measured temperature and ve-
locities p*v* can be calculated and x}, can be
evaluated, so that the region for which the term

involving the radial velocity can be neglected
may be considered known.
Now, equation (2) may be reduced to read:

. - LCT™ 1 ¢ “Lx
Wpao H(r*) p¥cy R TR | (k* +
* o 8T* N £
p*c en) x| = divF. (7)

Equation (7) has two more functions that must
be known in order to determine 7I: ¢, and
div F}. The first of these, ;. will be determined
experimentally and thus is known for purposes
of analysis at this point. In reference § a com-
parison of this eddy diffusivity with semi-
empirical values is made. The second, div F},
represents the net radiation absorption of the
fluid. This term may be evaluated in terms of a
radiant energy balance at a control volume as
(8, 11-137:

T 1
—di * * % *
div F} J{Kwp - j [ e T*
b

Qi=4n

3

exp [— 7,0, $¥)] + j BX(T*)

0

exp [— 7,(s*, s%)| & p*’ ds*’] de;

— 4'<;'p*B:(T"‘)} dw ®)

where H,; (T*) is the intensity of radiant
energy at a surface and +, is the optical path
length defined along the physical line of sight as

5
T (8%, 8%) = [ k) p* ds* (9)
o

The terms on the right-hand side of equation (8)
represent the absorption of radiation from the
walls, absorption of radiation from the gas, and
emission from the element, respectively. It is
immediately evident that the energy balance at a
point is influenced by the temperature of the rest
of the medium including the boundaries. If it is
required that div F} == 0 when the temperature of
the medium is uniform and equal to the tempera-
ture of the boundaries, equation (7) may be
written as
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Tt 1 @ o T
u*P*C;‘g;c—* e [r*(k* + P*Cpeh) 5‘;;‘]
@ P 1
= [ wpr {tg @ — mo oy [ L
.(]) L QJ ™

exp [— 7,00, s%)] ds, — [H, ([T*)

— HL T3] | Setp 1= 0,501 4

23,
o
v ] [wer e - ma
Qa=4x 0
exp [ 7,(s*, s¥)] ds* d.Qs} dw (10)
On the right-hand side of this equation are the
terms representing the influence of radiation: the
firstis the net radiation between the inner cylinder
and the element under consideration, the second
is the net radiation between the outer wall and
the element, and the third is the net radiation
between the remainder of the fluid volume and
the element.

This equation includes consideration of a
non-gray gas, temperature dependent absorption
properties, and gas to gas radiation as well as
turbulent convection-conduction in the thermal
entrance region of an annular passage. However,
the equation is extremely complicated and further
simplication is necessary before it can be solved.

Evaluation of absorption coefficient. The first
simplification involves the manner in which the
spectral dependence of the absorption coefficient
is handled. Usually, the assumption is made that
the gas absorbs only in certain wave number
regions (called bands) and does not absorb
outside these bands. However, the amount of
absorption within these bands is quite dependent
on the pressure and temperature of the medium
as well as the path length of radiation. Several
models have been suggested to describe the
phenomenon [9, 14], and of these methods, the
one chosen in this report is the statistical model.
The parameters appearing in this model have
been obtained from spectroscopic determination
of the band absorption characteristics by cal-
culating a total emissivity and fitting these
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calculations to the known experimental values
for the total emissivity. The difficulty in applying
these values to the present calculation is that
they were determined in a pressure region
different from the region of interest. However,
the existing data up to 1 atm [10] can be extra-
polated to 3-22 atm by use of the statistical
model. In Appendix A, the statistical model is
applied to make the following approximation
for the band absorption:

wi (Al 2)

* p*BH(T*) exp [— 7,(5*), 5¥)] dw
wi—(Awi/2)

~ Bi(T*) exp [— ni(s*, s*)] «(T*) (1)

where oj(T*) is the integrated absorption co-
efficient for the it band, and

7i(s*, 5%) = av/(Tave) fIni(s*', s%)  (12)
Lt e ]
Tave  |s* — s*;.r(T*”/T;)slz
(5™, 5%) E%"Ta;cz(s* — %) poas
and
Sn) = e77 [Lo(n) + L)) )

Of particular interest is the average temperature
used in the calculation. This was chosen because
the absorption is inversely dependent on the
three-halves power of the temperature. Since the
absorption is to be calculated along the path,
this average temperature is the natural one to
use. This model includes the ‘‘strong band”
model and the “weak band” model. It may be
noted at this point that, over limited ranges of
pressure and optical path length, the absorption
may be represented as (P*p*L)* [14, 15}, but
since the variation of optical path is large and
the pressure is rather high, such an approxima-
tion is not worthwhile in this case. For water
vapor, the parameters a and 4; have been found
experimentally [9, 10]. These data have been
extrapolated to 73 = 730°R and 3-22 atm
according to Appendix A, and resulting values
are given in Table 1.

Reduced equation and boundary conditions.
Now, for the set of discrete bands, the «; and B;
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Table 1. Absorption coefficients for steam at 730°R and
3-22 armospheres [9]

i a; w; fem~1) a

1 0-637 300 0-831
2 1:968 1587

3 1-418 3704

4 0-134 5348

5 0-093 7246

6 0-004 9091 i

are made dimensionless by relating them to the
maximum a; and By, respectively. In defining

_ T, _ BT
= amax(13) PEBETY
R (T

the right-hand side of equation (10) can be written
as

amax(T'3) By (T3 Glx*, r*, T*)
where G is defined as

G = ::‘i:‘ Bi {[H‘(l)(T’;) — H‘(l)(T*)] j’[(l)

LERY

— (HP@*) — HETD] S

amax(Tz) j-

7 Aw;

|

F
| ()
e=dn O

— m(TH] exp [— 7(s*, s9)] ds ng} (15)

where [ and f{® are the integrals in equation
(10), and N is the number of bands constituting
the spectrum. The function G is the non-
dimensionalized net absorption of radiation at
the point specified by co-ordinates (x*, r*). The
turbulent diffusivity can also be nondimensional-
ized with respect to the maximum value; i.e. let
e be defined as

(k*/p*c}) + en

= [ Tp%) T enlmax (16)
and introduce
r* InT* —In T3
r=:§§ @={mnT;-—1nT; "ty

It can be shown [8] that 2P*/ér* is negligible, and
if ¢P*/éx* is assumed to be small, the equation
of state becomes p*T™* = o375 Using this
equation of state and equations (16) and (17)
gives equation (10) in the form

RE W 0 10/ ¢0
[(k*/p%cD) + enlmax =~ ox*  ror\"® 5;‘)
R Gmax Bma:( (IS)

= T I (T T D (/D) + enlma

A further non-dimensionalization may now be
made by a scaling of the axial distance x*; that
is, introduce

de*  [(k*/p*c;) + enlmas
Ry R,

max

dr = (19)
But, since the maximum value of the eddy
diffusivity will be much larger than the molecular
diffusivity k*/p*c;, z becomes

z = J Ri—zf);a‘ dx* (20)
g

max

Now, the remaining parameter on the right-hand
side of equation (18) will be denoted by M, where

R Gmax(Tt)Bmax T*)
:T;Cp in (T',’Tt) (fk)max

This parameter represents the ratio of the
absorption and emission of radiation to the
turbulent diffusion of energy. Equation (18) may
now be written as

o0 10 20
s el = 22
Yoz T rar (re er ) MG 22)

The boundary condition at z = 0 is that the
fluid temperature be uniform at a value of T3, so
that ©(0,r)=0. At r= R}/R;=p, the
temperature will be equal to 77, and at r = 1 the
temperature will be 73, so that

(z, p) =1
8z, 1) = 0

M=

D

Method of solution

Since turbulent convection is quite likely to be
the dominant mechanism of energy transfer in
practical situations, it will be assumed that A is
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small. This suggests that ©® be expanded in a
power series about M = 0:

0 =3 Oz r) M
i=0

Since G depends on the temperature, which, in
turn, depends on M, G can be expanded in a
Taylor series about M = 0:

oG
G(x,r, ©) = G |m=0 + EWi

232G
e

The substitution of these representations for &
and G into equation (22) yields

20y 128 26q 86,
Uz TrE\CE )| T e
10 261
—-;a—r(re—g’—_—)] A[
00, 1¢ 00,
s i 2
+[u 32 r@r(re ar)}M +...

oG
= Gz, 7, 00) M + O (3,1, O0) M2+ ..

25)
Since equation (25) must be valid for all M, the

following sequence of boundary value problems
can be formulated:

23)

M
M=0

Mz
M=0 2

+... (29

90y 12 ([ 06
u——-—|re——) =0
oz ror or ) (26)
90(0, r) =0 @o(z, p) =1 @o(z, 1) =0
and
¢0, 1o ( 86,
YT T (’e W) ~ G0 | @)

010, r) = 61(z, p) = O(z, 1) = 0

and
20; 10 [ 06 )
“Fz T ra\"
1 o1-1G .
= m EM—I—_—i Vim0 &J = 2, 3, .. .(28)
0,00, r) = 64z, p)
= 04(z,1) =0 |

These boundary value problems are linear with
non-homogeneous (except for &g) equations and
homogeneous (except for ©g) boundary con-
ditions.

The velocity profile u(r) is known as a function
of the radius, while the eddy diffusivity e is a
function of the velocity. Hence, when the eddy
diffusivity dominates, e is dependent only on the
velocity. However, near the boundaries, the
eddy diffusivity vanishes so that the molecular
diffusivity must be known in order to specify
e(r). However, the molecular diffusivity can be
expressed in terms of the temperatures near the
walls, which are the known boundary conditions
for the problem. Hence, e is a function of the
co-ordinates. At this point it will be assumed that
e is a function only of the radius, that is, that the
eddy diffusivity is independent of the axial
co-ordinate even in the thermal entrance region.
This assumption has been verified experiment-
ally for flow tubes [6]. The consistency of this
assumption can be determined by comparing
the calculated temperature with the experimental
temperature.

Solution for non-absorbing gas. The boundary
value problem for Oy is that associated with the
development of the temperature profile in the
thermal entrance region for a non-absorbing gas
(as would be expected, since this is the physical
significance of M = 0). This equation may be
solved first by subtracting from @y the solution
for the fully developed profile, Oy, where

1
1 dr
Ou=g j S @9)

with
{d
r
C= J e (30)
14
Then, if Oene = Oy — Op4, equation (26) be-
comes

0Opne 10 00
oz ror \" Tor

with boundary conditions

Oent (0, ") = — (@fd); Oent (Z, P)

= O (1) =0 (31)
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Now ©,.,; can be determined directly by the
method of separation of variables; that is,
represent Ogn; as

Oene = X Anexp [—A2z]Ra(r) (32)

ne==1

where the pairs (Ra, An) are the characteristic
pairs defined by the following Sturm-Liouville
problem:

d dR, —
a; (re —dT) + ru/\"Rn =0 1(33)
I
Ra(p) = Ra(1) =0 J
and the 4, are given by

An = (34)

1
— | OrqurRpdr

')

1

[ urR% dr

p

Hence, a solution has been obtained in terms
of u and e. They have both been determined
experimentally {8] for an annulus with radius

ratio p = 0-2 and are listed in Table 2. The

Table 2. Non-dimensional velocity profiles and eddy
diffusivity for an annulus with radius ratio 0-2 at Reynolds
numbers from 19 000 to 38 000

r u(r) e(r) | r ulr) e(r)
0-20 0 0-169 0:65 0-990 0-941
0-25 0:765 0-351 0-70 0-980 0-981
0-30 0-872 0-494 0-75 0-967 1-000
0-35 0-928 0-663 0-80 0-940 0-977
0-40 0-961 0-805 0-85 0-897 0-931
0-45 0-981 0-865 0:90 0-839 0-815
0-50 0-993 0-897 0-95 0-741 0-725
0-55 1-000 0-904 1-00 0 0013
060 0-997 0916

method of determining u was by measurement
using a Pitot-static tube. The values for e were
obtained from the temperature profiles for the
calibration runs (with dry air) at three different
axial positions. From equation (26) it is clear
that if ¥ and @y are known experimentally for
two values of z, then e(r) can be deduced. Then,
if ©9 is known at a third value of z, a second
e(r) can be determined and compared with the
first. If these two determinations are the same

LESTER D.
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then it is safe to assume that e is independent of
=. However, because of the difficulty in different:-
ating experimental data, an alternative approach
was taken. In this approach, an e(r) is estimated
(by differentiation). and then equation (33) is
solved for the R, with this value of e(r) by
means of Runge-Kutta numerical integration on
an electronic computing machine. Since the
R, are determined up to an arbitrary multipli-
cative constant, the final requirement placed on
the Ry is

1

JruRi dr = C

p
for the estimated e(r). Now, the solution for Oy
is

O = 0pg + 3 Apexp [—A3z]Ra(r)

n=1

(33)

The O given by equation (35) is determined by
using the R, corresponding to the initial
estimate of e(r) and is compared with the
experimental values. Now, the estimated e(r) is
corrected until the calculated temperature agrees
with the experimental values. This corrected e(r)
function is given in Table 2 for p = 0-2 and
corresponding value C is 4-964. The first seven
Ry, are listed in Table 3 and plotted in Fig. 1.

Shown in Fig. 2 is the solution to equation (35)
for values of z from 0-05 to =0 using the e(r) in
Table 1. Also shown in Fig. 2 are the experi-
mental temperature profiles for a radius ratio of
0-2 at z =201, 0135, and 0-170 and for a
constant maximum velocity. The good agree-
ment between the calculated values and the
measured values at one = indicates that the
correct e has been determined. The good agree-
ment at three different values of z indicates that
the value of e(r) is independent of z (at least
within the relatively small range of - for which
experimental values were taken). This is in
agreement with reference 6.

This same e(r) function can now be used to
calculate the temperature profile for different
maximum velocities. The values of z correspond-
ing to an experimental run for a fixed u,,, can
now be determined by comparing the profiles
calculated by using equation (35) to the experi-
mentally measured profiles. In this way it is
possible to get a good correlation between
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FiG. 1. First seven characteristic functions of equation (33).
Table 3. First seven characteristic functions defined by equation (33)
r R R> Rs R4 Rs Rs Rs
0-20 0 0 0 0 0 0 0
025 1-8004 4-2801 59977 77735 9-5699 10-2887 10-5752
0-30 2-7063 5-9130 69821 6-8755 5:2592 1-9968 —1-5575
0-35 3-:0550 6-0316 56234 32213 —0-7648 —4-4255 ~ 60266
0-40 3-2807 5-6324 34512 —0-6579 —4-5991 —5-0858 —-2-1022
0-45 3-4407 4-8648 0-9665 —3-5313 —4-8445 —1-1140 3:5493
0-50 3-5512 3-8576 0-1293 —4-5841 —2-1385 3-1705 4-2480
0-55 36254 2-6855 —3-0091 —3-7933 1-4990 4-2362 0-0780
0-60 3:6671 1:4866 —3-9019 —1-7562 3-7900 1-7063 —3-6425
0-65 3-6825 0-4675 —4-0129 0-3526 39179 — 14711 —3-5160
0-70 3-6784 —0-7246 —3-3874 2-5854 19247 —3-7597 0-2188
075 3-6507 —1:7856 —2-0940 3-6806 —1-1166 —2-6140 3-4544
0:30 3-6012 —2-6387 —0-4508 3-2966 —3:2906 07399 2-5027
0-85 3:5351 —3-2576 1-1681 1-8362 —3-6063 3-4022 —1-0187
0-90 3.4028 —3-8639 32778 —1-2364 —~1-2184 3:3047 —4-1817
0-95 3-1316 —4-1416 5-0624 —49355 3-9705 —2-8408 1-1641
1-00 0 0 0 0 0 0 0

-

u,.. and z for a wide range of z from a series
of calibration runs [8]. Also, by using equation
(35) in equation (6), it was found that 7,
corresponds to a value of z from equation (20)

of 0-05. With e(r) known and with z given by the

maximum flow velocity, it is possible to estimate
the effect of radiation by calculating €, and by
comparing this calculated value with experi-
mental measurements.

Solution for absorbing gas. In order to evaluate



¢}
02

Fic. 2. Non-dimensional temperature profile for a
non-absorbing gas.

O it is necessary to evaluate G(x, r, ). This
term can be evaluated when Oy is known, but the
numerical procedure is complicated. Because of
this, two approximations were made in order to
simplify the computation. These are:

(1) The gas to gas radiation was neglected for
elements on lines of sight between the element
under consideration and the inner wall. This is
valid for the particular geometry considered
(small inner radius), but would have to be
checked again under other circumstances.

(2) In evaluating the absorption integrals
SO, f@, g, the temperature was assumed to be
given by @¢(x, r) and to be independent of x. As
shown in Appendix B, this will give correct
contributions for elements at axial stations close
to x. While some error is introduced in evalu-
ating the contributions from more distant
axial stations, these contributions are small
because most of the radiation is absorbed before
reaching x.

In Appendix B, it is shown that G may be
written as
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e
G = > bil 1) (Hetonts. o)

— HPB(x, D]} f(x, 1)
— (HP(O(x, )] — HE[Ox, DI} £2(x, 1)
— 8%(x, 1)) (6.

The number of bands N has been chosen as 6 for
water vapor. The f{, f{®, and g{® are derived in
Appendix B and can be evaluated by numerical
integration. However, before numerical calcula-
tions for G can be made, it is necessary to
determine the intensity of radiation at the
surfaces.

Calculation of surface intensity. If the walls are
black, then the surface intensity is determined
by the temperature of the wall, but if the walls
are not black, the reflected energy must be
considered as part of the surface intensity. This
may be accomplished by considering the follow-
ing equations for a single band and a known
temperature 7*:

HP = ehi(p) + (1 — en)Ji¥ 37

where H(V is the intensity of surface one (the
inner cylinder), and J{V is the intensity impinging
on surface one. Also,

H® = ehi(l) + (1 — e)JP (38

where H{® is the intensity of surface two (the
outer cylinder), and J{? is the intensity impinging
on surface two. The intensity impinging on
surface one may be written as

J = F§2)H§2) —+ ng’(p) (39)

where F(® is the fraction of intensity from surface
two that strikes surface one, and G{*(p) is the
intensity striking surface one as a result of the
emission of the gas. Finally, the intensity im-
pinging on surface two is

J%Z) — Hgl)Fgl) __:_ Ggl)(l) + HE'Z)F;;‘] (40)

where F(! is the fraction of intensity H{» that
strikes surface two, FV is fraction of intensity
H® that strikes surface two (itself), and G{V(1) is
the emission of the gas that strikes surface two.
This gives four equations and four unknowns,
which may be written as
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0 HP €1 hi(p)
—(1 — e2) H@ e hi(1) @4l)
0 J - G(1)
1 J@ G(1)

Taking the inverse of this matrix yields equation (42):

| — (1 — €1) 1.‘5_3) (1 — €1) F(iz)
1 (1 — e) Fi 1
B\ (1 — &) FOF® F
Fgl) (1 - El) FSI)F%‘.’.) + F(‘J)

€1 hi(p)
e hi(1)
GP(p)
G(1)

I—ea)[l—(1—e)FP (11— e)(l— )FP®

(1 —e)(l — e FV (1 — e)
l-— e)Fy) (I — ea) F
(1 — e) FM 1

[¢8]
Hi
H

(1)
Ji

(2)
Ji

(42)

Av=1—(1 — &) [F® + (1 — e1) FPF]

By means of this equation the surface intensities
are given in terms of the surface temperatures
and emissivities and also in terms of the tempera-
tures of the medium and its emission. It is now
possible to evaluate G numerically for the
pertinent conditions. The function G has been
calculated for steam flowing in an annulus with
radius ratio 0-2 and is plotted in Fig. 3 for
z = 017, at an inner wall temperature of 2000°R
and a pressure 3-22 atm. The net absorption is
negative near the inner wall—because the gas
has been heated and is now emitting and is
positive for the rest of the region.

Calculation of fluid temperature. The solution
to the boundary value problem for &1 may now

be outlined, since G(z, r, &) has been determined

(numerically for some special cases). Since the
Ry have been defined, a solution utilizing them
will be found. First, expand G(z, r,89) in a series
of the characteristic functions R, of the Sturm-
Liouville problem as follows:

Gz, r, O0) = u(r) 3, Pu(z) Ralr) (43)

-90 [ ! ! i l | |
02 06

FiG. 3. Absorption of radiation for 71 = 2000°R and
P = 3:22 atm.
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It is a consequence of the theory of such ex-

pansions that
1
1
Du(2) = ¢ J G(z, r) Ru(r)r dr (44)

I4
and are known functions of - (which is treated
as a parameter in the expansion). Again using
the Separation of Variables techniques 6; is
written as

\48

01z, r) = _,lx,.(z) Ra(r) 45)

where the X, are to be determined from the
differential equation. Notice that the boundary
conditions on the inner and outer cylinders are
satisfied directly. Equations (33), (44), and (45)
may be substituted into equation (27), which
becomes

x

Xn
Z (%—Z + /\nxn - (Dn) Rn =0 (46)

n =1
with boundary condition X,(0) = 0. Because the
Ry are linearly independent, their coefficients
must vanish, i.e.

dX

Xy = Dy, @7

Hence, the x» may be determined as
Xn(2) = exp [—A32] % exp [A28] Du(é) dé  (48)

or, substituting for &,
1z

Xp = icexp [—Azz] J j Ryu(r)

p 0

NICHOLS

Thus, & is specified in terms of G.

In order to calculate y. it is necessary to
know G as a function of = from zero to the point
of interest. However, G requires extensive
calculation at each z. Consequently, an approxi-
mation for G is desirable in order to evaluate
equation (49). Because the integrand in equation
(49} is weighted more heavily for ¢ near z, G(¢. r)
can here be approximated by G(z, r). With this
approximation, the y, become

0l = 5 (1= exp [~ D Dulz) (S0)

For conditions of z =0-17, 77 = 2000°R.
and P = 3-22 atm, the @, are given in Table 4.
The 6; is found to be of the same order of
magnitude as By, so that M must be small com-
pared to 1 in order that equation (23) might be
expected to converge.

This same procedure can be followed in
obtaining the O; for j greater than 1. An estimate
of the magnitude of @ has been made for the
case considered herein. It was found that the
right-hand side of equation (27) was of the same
order of magnitude as the right-hand side of
equation (28) for @.. Consequently, @2 is the
same order of magnitude as @, so that if A is
small compared to 1, & and higher terms can be
neglected. For this situation

0= 6)+ MO, (&1

Heat transferred to gas

The amount of energy transferred to the gas,
as a result of both convection-conduction and
radiation, may be calculated by multiplying the
first term on the left-hand side of equation (7) by
2mr* dr* dx* and integrating from R} to R} and

exp [A2€] G(¢, rydérdr

(49)

Table 4. Expansion coefficients and characteristic values

from O to x*. This yields

h 1 2 3 4 5 6 7

An 1-5484 5:3654 8-8428 12-1094 15-4167 18-6832 21-8587
An? 2:3975 28-7877 78-1944 146-6376 237-674 349157 477-804

—An 0-1256 0-0253 0-0135 0-0098 0-0080 0-0064 0-0053
B 0-8929 0-0037 0-0079 0-0001 0-0025 0-0003 0:0012
Cn 7-1077 0-1456 0-5864 0-0760 03165 00355 0-2223
Dy 0-0982 0-0046 0-0063 0-0015 —0-0001 —0-0005 —0-0004
@5 (0-17) 3-2925 0-5091 —0-6088 —1-2863 —1-0688 - 12462 —0-9900
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2. T3 -
0% = 2nct p3 T3l RS In T-—‘ qiz) (52)
where
1
qg(z) = | ru(z, rydr (53)

P
For a non-absorbing gas, this becomes

1
q(z) = jE ru@o(z, rydr = | rufs dr

€K 1
+ X dpexp[—A2] J ruRadr  (54)
n=1 P
and if p = 02

q(z) = 018378 + 3, By exp [—A2]

n=1

(33)

where the B, are given in Table 4. Hence, if
O is defined as

T .
Q.. = 018378 Inzd 2mey piT 3, RS (56)

then for A%z > 5 equations (55) and (56) may be
substituted into equation {52) which becomes:

0,

For an absorbing gas,

I — Brexp[—Ajz

1
q(z) = | ru(® + MOy) dr
I

which, for small M and A3z > 5, can be substi-
tuted into equation (52) which becomes:

Quans = Ona + 1'09609A{D1C1Qw {(p=02)
(57
where C; and D are given in Table 4.

RESULTS AND DISCUSSION

The procedures developed in the preceding
sections permit calculations of the effect of
radiation on temperature profiles in channels for
absorbing and non-absorbing gases. As an
indication of the usefulness of the methods
presented, analytical and experimental results
are compared in Fig. 4 for the previously
mentioned case of steam flowing in an annulus.
The solid lines in Fig. 4 show temperature

O
O STEAM
08 A AR
(0)
06
®
o4
o2 /-CALCULATED
-
0 !
o2 04 06 08 -0
r
FiG. 4(a). Effect of radiation on temperature profile with
Ty = 2000°R.
10
08
(b)
06
®
o STEAM
04— 0 AR
= ~CALCULATED
02+
g1

0
02 0-4 08 0

Fic. 4(b). Effect of radiation on temperature profile with
T3 = 2000°R.

profiles that are calculated by using velocity
profiles and eddy diffusivities determined from
experiments with air. For a single run at 1.0 atm
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the results may be seen in Fig. 4(a), and for a
single run at 3-22 atm, where W = 0-034, the
results appear in Fig. 4(b). For the low pressure
[Fig. 4(a)] no effect of absorption is observed.
Both analytical and experimental datashownindi-
cate agreement between air and low pressure
steam. The effect of increasing the pressure,
thereby increasing the opacity (and M) is to
increase the temperature by a maximum of 7
per cent, and to increase the heat transferred by
4 per cent. The measured temperature difference
between steam at 3-22 atm pressure and air is
compared with the calculated difference in Fig. 5.

40—
o
a ~CALCULATED
= a a o ;
0 0/ o
c?: w] m] /
20— o
3 a
L /o
o ! l L l I |
02 04 06 08 10
r
FiG. 5. Measured temperature difference between

absorbing medium (steam at 71 = 2000°R and
P = 3-22 atm) and air.

The agreement is reasonable in light of a possible
10 degree error in determining the temperature
difference. Unfortunately, no more experimental
data were taken, so that a statistical error analysis
could not be made.

For the steam conditions considered, the
radiation effect will manifest itself as an increase
in the temperature at any point because the
absorption at that point increases faster with M
than the emission. For comparable conditions,
this result is in agreement with reference 4.

The heat transferred to the gas was calculated
from the solutions for the temperature profile.
The effect of radiation is to increase the heat
transferred to the gas. For the conditions in the
experiment the effect was only of the order of
4 per cent.

CONCLUDING REMARKS
A study has been made of the turbulent
convection and thermal radiation absorption
phenomena for a non-gray gas with variable
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density in the thermal entrance region of an
annulus. The techniques developed for this
special problem can be applied to more general
problems as long as the radiation interaction
parameter M is small. This parameter, which
expresses the amount of radiation absorption
compared to the turbulent convection, must re-
main small because the solution for an absorbing
gas was obtained by perturbing the solution to
the equivalent problem for a non-absorbing gas
in powers of M.

In order to solve the thermal entrance problem
for a non-absorbing gas both the velocity profile
and the eddy diffusivity have to be known. For
the particular analysis presented herein they were
determined experimentally. For the interacting
gas the absorption properties must be known. In
this analysis they were obtained by adapting the
experimental values for isothermal volumes for
use in non-isothermal volumes by means of an
appropriate average temperature. However. if
the spectral data were not available, the medium
could be considered a gray gas and solutions
could be obtained in the same manner.

Analytical and experimental results were
compared for the case of water vapor flowing
at Reynolds numbers near 20 000 at a pressure of
3-22 atm with an inner wall temperature of
2000°R. The radius ratio for the annulus was
0-2. The temperature profile was measured at a
point 15 diameters downstream of the start of
the heated section. For these conditions, A is
0:034, and the requirements of the analysis are
fulfilled. For these conditions, the temperature is
increased by 7 per cent at the maximum, and the
heat transferred is increased by 4 per cent due to
absorption. The experimental measurements for
the temperature profile and the heat transferred
agree well with the calculated values.
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APPENDIX A
Determination of Band Absorption
The representation of the band absorption by
the water vapor will be determined by use of the
statistical model; that is, the integral

wit (Dewif2)
<o B (T exp [—7 (s, s%)] do

w; —(Awi2)

(AT)
will be replaced by
K} p*Bu(T*) exp [—mi(s*, $%)] Aoy
where the optical path length = must be ex-
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pressed in terms of the physical properties of
water vapor as well as the physical distance. On
the basis of the statistical model [9] the =; can be
expressed as

, 2mb*\ .[a;RIP* &* .

(s, 5) = (-g,.—)f [J,T el Gl S)] (A2)

where

S@) = n e [lo(n) + h(n)]

This representation for the optical path is chosen
such that for the “weak band” approximation
[i.e. f(n) &~ 7] that the =; will approach

aGRP*(s — 5)/Aw = Kip*R3(s — 5).

This is the definition of a* and is known
experimentally. However, the temperature of the
medium is not uniform, and an extension of the
method will be made wherein an average
temperature will be used. Since the «lp* is
inversely proportional to the three halves
power of temperature, the natural average
temperature to use is the one that will yield the
correct value for the average absorption, i.e.

.

v | () e @
where "
Now, the dependence of
a= 2—;{‘7: and a = a}fiP*

on temperature must be determined. For the
collision-broadened bands, it can be shown [9]
that

a(T*, P*) = a(T3, P*)v/(Tave)  (A4)
and
a(T*, P*) = a(T3, PT3*  (A5)
so that
(s, 8) = a(T3, P*)v(Tave)f
Weldrasi—6 (9

a(Ts, P*) " ave
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where ¢ = s’/s. Hence, when the temperature
distribution is given, then the absorption pro-
perties are known. This representation includes
both the “weak band"” approximation { f(n) &~ 7]
and the “strong band” approximation

) ~ V{2

The method is versatile in the sense that an
extrapolation to different pressures may be
estimated on the basis of individual band
absorption data [10l. On the basis of this
extrapolation the dependence of the absorption
band on pressure is given for water vapor as

o P = aTn P (5s) A

and

‘P *\ 0-185
alT3 P*) = ai(T% P} (F) (A8)
0
where the reference pressure Pg is 1 atm. Now
it is possible to determine the absorption
quantities for water vapor at any temperature and
pressure in terms of the absorption quantities at
the reference conditions. For water vapor at
322 atm and 730°R these quantities are
presented in Table 2.

APPENDIX B
Evaluation of Radiation Interaction Integrals
The function G as given in equation (15) must
be written in terms of the variables used in the
analysis, that is, (x, r, ©). To do this, first, break
the integral over the entire solid angle into two
sections (Fig. 6), so that G becomes

G =Ggwm -+ G2

where

L em~Yp'r)
G =2 3'9' J J
T(T?) — h(TH)] exp [— )0, 5)
+ (T3, P¥) Jl T h(T*)
— h(T)] exp [— i/, 51) A7)

(r cos 01 )

dé; dxy (B1)

r'4
0| $|
s|
Ly
p COS §, (b)
_L [ ;zn .
| 24 N
pSIN 8.~ —-//

(b) Gas to gas radiation for shaded region in part (a).
FiG. 6. Co-ordinate sketches to determine radiation flux.

and

cor _ zﬁgj ”J

— h(TH] exp [— 7210, s2)
-+ ai(T.z, P*) J Tavelhi(T*)
— hy(T*)] exp [—7X(s5, s2)52] A€, }

8y
(1= reos %) 4o, ds (B2)

{{h(T2)

a2
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-6,

coS 6,

]
SIN 8,

}
ol /L'X"‘xz—-'/ -~ X

X—Xz——-r

(d) Gas to gas radiation for shaded region in part (c).

FiG. 6. Co-ordinate sketches to determine radiation flux.

and the 7; are given by equation (A6).

The G and G® functions are greatly simpli-
fied if a;(T3, P*) is small. Then the gas to gas
radiation can be neglected. However, in general,

H.M.—2Q

this is not the case, and these equations have to
be used with no further simplification. But, for
steam in the entrance region of an annulus, it
can be shown that the gas to gas radiation is
negligible in GW. This is accomplished by
evaluating the integral using the temperature
profile given by @9 and by comparing this term
with the wall to gas term.

Another simplification can be made by con-
sidering the axial temperature variation of the
temperature about a given x. It can be shown
(8] that the integral over a line from a given point
in the flow field to another point can be evaluated
with small error by considering that the tempera-
ture profile at the first point be extended over the
entire length of the flow region.

The functions G1) and G® may now be
evaluated once a temperature profile is specified.
If the following integrals are defined

5 cos~lpr
s =5 | | ewt=r0.5
v 0

p(rcos 61 — p)
O3+ r2—2rpcosfy +
VI =t = oMY}

P2)3/2 dé, dy1 (B3)

cos~'{p*—

0

fﬂn0=§]

exp [—7{7(0, 52)]
(I — rcos 8s)

(2 + r2 — 2rpcos 02 + p2)3/2 dbz dy:
(B4)
where y1 = x1 — x and y2 = x2 — x, and
5 cos~Hp'V[(1—pD(rt—pMl/r} 1
g3¥(x, r) = ;a ]. J T(r)
0
{hd{T*(r) — h(T *(’ 1}
exp [—7{2(sy, s2)] d¢,
(1 — rcos ) d0s dys ®5)

yi+r2 —2rpcos bz - p?

G can be written as shown in equation (36).
Numerical results for steam with T7 =2000°R
and P* = 3-22 atm are presented in Figs. 7 to 9.
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, 60—
Fic. 7. Absorption integrals with T1 = 2000°R and
P =322 atm. It

40["—
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5 cos™lp

[ Tewtro. o
0 0

(1 — pcos f)(cos 6 — p)
(x2+1—2pcos b + p?7

Al

(1) —
F® =

Q) (x, r)

dé dx

4 5 cos~lp
o4 Towtsian
0
(1 — pcos B)(cos 8 — p)

GEF+1—2pcos 0+ p22’ pdfdx
4 5 cos—i(20~1)
PP =- J j exp [— {0, s2)]
° (1 — cos 6
— cos 6)?
Fic. 8. Absorption }PZg;aész :g;h Ty = 2000°R and [x2 + 2(1 — cos O
4 5 cos=p 1
APPENDIX C G =a j j j T
Evaluation of Radiation Flux Integrals o1 4 e
The terms representing the intensity 1mpmgmg exp [— 7(2)(0 sl d¢
on a surface may be obtained by an integration (1 — p cos b)(cos 6 — p) df dx

over the appropriate surface as follows: (2 +1—2pcos &+ p%32

1]

FiG. 9. Non-dimensional gas emission integrals defined in
equation (B5) for 71 = 2000°R and P = 322 atm.
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cos~i(2p'—1) 1

4 ~ cos B
G‘n:at;J (1 — cos 6)2df dx
0

Tty exp [= 720, s 47 X s —oos e

(1 — pcosB)(cos 8§ — p)df dx
(x2+1— 2pcos 8 + p2)32

T h(r) exp [—{P(0, s)] d¢” X

+
5
RPN
e
o
Ot———y —

Résumé—L’influence de I'absorption de rayonnement sur le profil de température et le transport de
chaleur dans un milieu absorbant s’écoulant dans un tuyau annulaire, a été examinée analytiquement.

Dans I'analyse, un écoulement turbulent d’un gaz non gris avec une densité variable et des co-
efficients d’absorption dépendant de la température est considéré. Les résultats de l'analyse sont com-
parés avec ceux d'une expérience effectuée avec de la vapeur d’eau s’écoulant 3 des nombres de
Reynolds voisins de 20 000 & des pressions de 1 et 3,22 atm dans un tuyau annulaire avec un rapport
de rayons de 0,2. Le résultat théorique est en accord avec le résultat expérimental que pour une
température de la paroi intérieure de 1110°K et une pression de 3,22 atm, I’absorption du rayonnement
augmente légérement la température (environ de 7%). Ce résultat est également en accord qualitatif

avec l'analyse de Viskanta pour un fluide au repos entre deux plaques paralléles.

Zusammenfassung—Der Einfluss der Strahlungsabsorption auf das Temperaturprofil und den Wirme-
iibergang an ein absorbierendes Medium, welches in einem Ringrohr strdomt, wurde analytisch
untersucht.

In der Analyse werden ein turbulenter, nicht-grauer Gasstrom mit variabler Dichte und temperatur-
abhingige Absorptionskoeffizienten beriicksichtigt. Die Ergebnisse der Analyse werden mit denen eines
Versuches verglichen, der mit Dampf durchgefiihrt wurde, welcher bei Reynoldszahlen nahe 20 000 bei
Drucken von 1,0 vis 3,22 atm in einen Ringrohr vom Radienverhiltnis 0,2 strémt, Das analytische
Ergebnis stimmt mit dem Versuchsergebnis dahingehend {iberein, dass fiir eine Temperatur der
Innenwand von 837°C und einem Druck von 3,22 atm die Strahlungsabsorption die Temperatur
geringfiigig erhoht (ungefahr 7). Dieses Ergebnis steht auch in qualitativer Ubereinstimmung mit
den Ergebnissen der Analyse von Viskanta fiir eine stilistehende Fliissigkeit in einer planparallelen

Geometrie.

AnHoramua—B padoTe JAHO AHATHTHYECKOE HCCAENOBAHHE BIMAHHA NOTIOMEHHA HITyde-
HUA HA MPoduIbL TeMIEpaTyp U MepeHOC Telia K MOTOKY Toriomarplieff Cpefsl B KaHATe.
AHATU3MPOBAACH TYp6yNTeHTHHEI PO3PAYHEI a30BHIl MOTOK C IePEMeHHON TIOTHOCTHIO it
3ABHCALIMMM OT TeMNEpaTypsl koaddiusenTamit noraowenus. PeaynsTaT aHATN3a CPaBHIL-
BAJIHCh C Pe3ybTATaMi IKCIEPUMEHTATHHOTO HCCAETOBAHNA TeYEHHA HHAKOCTH B KaHAJE C
coorHourenueM pamuycos 0,2 npu uncaax Peftnonsgca ~20000 u gasmenunax 1,0 n 3,22 ary.
PeayabTaT aHaiN3a COTIACYETCA C IKCIEPUMEHTATLHMM DeayJbTATOM : IAA BHYTPeHHell
remneparypn cTenku B 2000°R u pasiaeHun B 3,22 aT™ morioumenne M3MyveHHA IPHBORUT K
He3HAYHTEIBHOMY yBeINYEHHI0 TeMnepaTypsl (0KOI0 T %). DTOT peaybTaT TaKHe KaveCTBEH-
HO COTIACYETCA C PE3YIIbTATAMIU AHAMN3a BUCKAHTA IAA KPUTHIECKOrO MOTOKA NP TIOCKO-
NapaIesbHON TeOMETPHH.
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