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Abstract-The influence of the absorption of radiation on the temperature profile and heat transfer 
to an absorbing medium flowing in an annulus has been examined analytically. In the analysis, a 
turbulent, non-gray gas stream with variable density and temperature-dependent absorptioncoefficients 
are considered. The results of the analysis are compared with those of an experiment performed with 
steam flowing at Reynolds numbers near 20 000 at pressures of I.0 and 3.22 atm in an annulus with a 
radius ratio of 0.2. The analytical result agrees with the experimental result that for an inner wall 
temperature of 2000% and a pressure of 3.22 atm the absorption of radiation increases the temperature 
slightly (about 7 per cent). This result is also in qualitative agreement with results of Viskanta’s analysis 

for a stagnant fluid in a plane parallel geometry. 
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expansion coefficients de- 
fined in equation (34); 
ratio of line width to line 
spacing; 
dimensionless absorption 
coefficients ; 
expansion coefficients de- 
fined in equation (55); 
Planck function for wave 
number w, wavelength A, 
or the ith band* 

’ line width; 
constant; 
expansion coefficients de- 
fined in equation (57); 
specific heat at constant 
pressure ; 
normalized eddy diffusi- 
vity; 
absorption integrals de- 
fined in equations (Cl), 
(C2)9 and (C3), re- 
spectively; 
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a Ph.D. thesis. 
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radiation flux vector; 
absorption integrals in 
equations (B3) and (B4); 
dimensionless net radia- 
tion absorption function; 
dimensionless net radia- 
tion absorption function 
defined in equations (Bl) 
and (B2); 
absorption integrals de- 
fined in equations (C5) 
and (C4), respectively; 
absorption integral defined 
in equation (B5); 
intensity at a surface for a 
given wave number; 
dimensionless intensity at 
a given band on surface 
one and surface two for 
temperature T* ; 
dimensiomess ratio of 
Planck function, 
Br(T”)/Bmax(Tz) ; 
Bessel functions of zero 

Jl, A, 

and tirst order of 
imaginary argument ; 
intensity impinging on sur- 
face one and surface two ; 
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mass absorption co- 
efficient for ith band; 
thermal conductivity; 
length of path for radia- 
tion; 
radiation interaction para- 
meter, 

mass flow rate; 
pressure; 
heat transferred; 
non-dimensional heat 
transferred to absorbing 
gas and non-absorbing gas 
respectively; 
nth characteristic function 
defined in equation (33); 
radius of inner and outer 
cylinder, respectively; 
dimensionless radial co- 
ordinate, P/R:; 
radial co-ordinate; 
element of path length; 
dimensionless path length 
9/R;, S;/R;, S;/R;; 
temperature of gas; 
temperatures of inner and 
outer cylinder, respec- 
tively; 
dimensionless axial 
velocity; 
axial velocity; 
maximum value of axial 
velocity; 
radial velocity component; 
dimensionless axial co- 
ordinate, x*/R:; 
axial co-ordinate; 
critical value of axial 
velocity; 
reduced axial co-ordinate 
defined in equation (20); 
absorption coefficient for 
ith band; 
dimensionless ratio of ab- 
sorption coefficients, 
cyV*)la~dGI; . . 
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Superscripts 
1, 
2, 
* 

eddy diffusivity for heat 
transfer; 
emissivity of inner and 
outer cylinder; 
variable in equation (12); 
dimensionless function of 
temperature, 

In T* - In Tz . 
In Tl - In T; ’ 

entrance temperature; 
fully developed tempcra- 
ture profile; 
dimensionless tempera- 
tures in equation (28); 
angles shown in Fig. 6: 
mass absorption coeffici- 
ent for wave number w: 
nth characteristic value of 
equation (2 1) ; 
dummy variable of intc- 
gration; 
radius ratio of inner cylin- 
der, R;,iRH; 
density; 
density at outer wall; 
optical path length for 
it” band defined in equa- 
tion (i\6); 
optical path length for 
wavelength, X; 
expansion coefficients de- 
fined in equation (44); 
expansion coefficient de- 
fined in equation (48); 
solid angle; 
wave number, l/h; 
band widths for ith band. 

inner surface ; 
outer surface ; 
dimensional quantity. 

INTRODUCTION 

THE INTERACTION of radiant energy with an 
absorbing medium has been of engineering 
interest for quite some time. Recently, the 
interaction of radiant energy with moving 
absorbing media. therebv adding another mode hne spacmg; 
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of energy transfer, has become of interest [l-4]. 
In contrast to most previous analyses of this 
phenomenon, the present study considers the 
absorbing medium to be a non-gray gas (that is, 
having absorption properties that are dependent 
on wavelength) with absorption properties that 
depend on temperature. Further, this absorbing 
medium is considered under conditions of fully 
developed turbulent flow. 

Consider the steady flow of a gaseous ab- 
sorbing medium in an annular passage with a 
fully developed turbulent velocity profile. At 
some point the temperature of the inner cylinder 
is suddenly increased, while the temperature of 
the outer cylinder remains unchanged. The 
subsequent development of the temperature 
profile and the heat transfer to the gas is the 
subject of this study. This development takes 
place in a region called the thermal entrance 
region. In this region the fluid is assumed to be a 
perfect gas subject to the following conditions: 
no heat sources, negligible body forces, constant 
specific heat, and negligible viscous dissipation. 
The temperature profile and the heat transfer 
will be calculated not only for an absorbing gas 
but also for a non-absorbing gas; in fact, the 
solution for the absorbing gas is obtained by 
perturbing the solution to the problem for the 
non-absorbing gas. This method can be used 
quite extensively, because the effects of turbulent 
diffusion will be quite large compared with 
those due to radiation absorption, except under 
conditions of extremely high temperatures and 
pressures. For the case of a non-absorbing gas, 
the thermal entrance problem will be solved by 
an extension of the techniques used in the 
Graetz problem in order to take into account a 
variable fluid density. 

In order to predict the temperature and heat 
transfer, the turbulent convection as well as the 
radiation absorption must be determined. The 
method of describing the turbulence is that 
wherein an eddy diffusivity for heat transfer is 
introduced [5-71. This quantity must be de- 
termined experimentally for the pertinent flow 
conditions. For the present analysis, the eddy 
diffirsivity is determined from measurements of 
the temperature protie in air [8], and this value 
is used to calculate the temperature for the 
steam. 

The method of computing the absorption 
properties of steam is the statistical method 
described in reference 191. Herein the absorption 
is assumed to take place in discrete bands. The 
dependence of the absorption on temperature 
and pressure is determined from experimental 
results [9, IO]. The particular bands to be 
considered are determined from spectroscopic 
measurements. 

ANALYSIS 

Derivation of equations 
Consider the thermal entrance length problem 

for turbulent flow in an annulus. The solution 
to this problem involves considering the equa- 
tions of mass, energy, and momentum as well as 
an equation of state for the fluid. In general, 
these equations must be considered simul- 
taneously. However, because of their complex 
nature, certain simplifying assumptions will be 
made herein. 

For the thermal entrance length problem where 
the velocity profile is fully developed on entering 
the heating section, there will still be a velocity 
adjustment in the thermal entrance region to 
account for the heating and consequent density 
change. However, for turbulent flow at a region 
somewhat downstream of the entrance to the 
heating section, it can be shown experimentally 
that the velocity can be separated into a product 
of a function of the axial position and a function 
of radius as follows: 

u* = u* ,,,(x*) . e*) (1) 

These functions will be determined experi- 
mentally for the conditions of interest. An 
estimate of the length of the region wherein this 
assumption is not valid must be determined; in 
this case the determination was experimental. 

With the axial velocity profile specified, it is 
not necessary to consider the momentum equa- 
tion. The energy equation including radial 
turbulent diffusion and radiation absorption, but 
neglecting axial diffusion, may be written as 

aT* 
m+u*g)-_llig[r*w+ 

aT* 
p*cf m) ar* 1 = - div F: (2) 
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and the continuity equation may be written as 

g (r*p*v*) f a$(r*p*u*) = 0 (3) 

Except in the term involving the radial 
velocity, temperature is the dependent variable 
in the energy equation. It will be shown that 
even in the thermal entrance length, there is a 
region wherein it is possible to neglect the radial 
velocity term in the energy equation; i.e. 

z* aT* 
p*u*ar* < p*u*ax* 

so that the temperature will remain as the only 
dependent variable. Intuitively, it may be ex- 
pected that very close to the entrance region the 
radial temperature gradient would be very large, 
such that the inequality is not valid. This is in- 
deed the case. Consequently, a determination of 
the distance xH, it is necessary first to solve the 
continuity equation for v* : 

P 
1 

P*v* = - j3 as* 
s 

a (u;,p*) u(r*) r* dr’ (4) 

RI' 

Also, an additional requirement must be satis- 
fied, namely, the mass flow rate in the annulus 
ti* must be a constant, where li?* is defined as 

. 

ril* = 2lr u* a(~*) P;] u(r*) T*c;:, r *) r* dr* 

RI. 
0) 

where the density variation is specified in terms 
of the temperature variation. Now uLaX may be 
expressed in terms of its value at the entrance to 
the heated section u&, ,, as 

‘fu(r*) r* dr* 

u&ax(x*) = use. 0 R,* 

d;. 

J u(r*) [Tg/T*(x*, r*)] r* dr* 
RI* 

(6) 
Hence, p*v* can be estimated once T* and u* 
are known as functions of r* and x*. From 
experimentally measured temperature and ve- 
locities p*v* can be calculated and x:~ can be 
evaluated, so that the region for which the term 

involving the radial velocity can be neglectsd 
may be considered known. 

Now, equation (2) may be reduced to read: 

” * ,. 

u;,, u(r*) p*c; ‘& - $ $ r*(k* j 

pT* 
p*cirh) ~ 1 = - div FT. (7) 

Equation (7) has two more functions that must 
be known in order to determine T: Eh and 
div Ff. The first of these, Eh. will be determined 
experimentally and thus is known for purposes 
of analysis at this point. In reference 8 a com- 
parison of this eddy diffusivity with semi- 
empirical values is made. The second, div F:, 
represents the net radiation absorption of the 
fluid. This term may be evaluated in terms of a 
radiant energy balance at a control volume as 
[8, 1 l-131: 

-divF: = DsrJp”: J [H~..(T*> 
0 R.=l_; 

exp [- ~~(0, s*>] + 
J 

B;(T*‘) 

exp [-- T&*‘, s*)l K;‘P*’ ds*’ 1 d& 

- 4~zp*B:(T*) dw (8) 

where Hi, ,(T*) is the intensity of radiant 
energy at a surface and rti is the optical path 
length defined along the physical line of sight as 

:w (s*‘, s*) = ;i,~:‘p*’ ds*’ (9) 

The terms on the right-hand side of equation (8) 
represent the absorption of radiation from the 
walls, absorption of radiation from the gas! and 
emission from the element, respectively. It is 
immediately evident that the energy balance at a 
point is influenced by the temperature of the rest 
of the medium including the boundaries. If it is 
required that div FT = 0 when the temperature of 
the medium is uniform and equal to the tempera- 
ture of the boundaries, equation (7) may be 
written as 
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ST* 1 a 
u*p*c*- --- 

ST* 

p 2x* r* Zr* 
r*(k* + p*c;E,,)T 

iir 1 

- %, ,(Ql J i exp [-- ~~(0, s*)] df& 

8. 

1 
f- 7 IS K;p*’ [BE(Tf’) - B:(T*)] 

exp [- T&*‘, s*)] ds*’ d.Q, (10) 

On the right-hand side of this equation are the 
terms representing the influence of radiation: the 
first is the net radiation between the inner cylinder 
and the element under consideration, the second 
is the net radiation between the outer wall and 
the element, and the third is the net radiation 
between the remainder of the fluid volume and 
the element. 

This equation includes consideration of a 
non-gray gas, temperature dependent absorption 
properties, and gas to gas radiation as well as 
turbulent convection-conduction in the thermal 
entrance region of an annular passage. However, 
the equation is extremely complicated and further 
simplication is necessary before it can be solved. 

Evaluation of absorption coeficient. The first 
simplification involves the manner in which the 
spectral dependence of the absorption coefficient 
is handled. Usually, the assumption is made that 
the gas absorbs only in certain wave number 
regions (called bands) and does not absorb 
outside these bands. However, the amount of 
absorption within these bands is quite dependent 
on the pressure and temperature of the medium 
as well as the path length of radiation. Several 
models have been suggested to describe the 
phenomenon [9,14], and of these methods, the 
one chosen in this report is the statistical model. 
The parameters appearing in this model have 
been obtained from spectroscopic determination 
of the band absorption characteristics by cal- 
culating a total emissivity and fitting these 

calculations to the known experimental values 
for the total emissivity. The difficulty in applying 
these values to the present calculation is that 
they were determined in a pressure region 
different from the region of interest. However, 
the existing data up to 1 atm [lo] can be extra- 
polated to 3.22 atm by use of the statistical 
model. In Appendix A, the statistical model is 
applied to make the following approximation 
for the band absorption: 

wc+(LL‘/?) 

J .*p*B*(T*) exp [- T~(s*‘, s*)] dw 

wi-(Aw./l) 

m Bf(T*) exp [- +t(s*‘, s*)] ar(T*) (11) 

where a:(T*) is the integrated absorption co- 
efficient for the itb band, and 

Tb f s*‘, s *> = adPaVe) fl7&*‘, s*>l 02) 

and 1 

f(7) = 7 e-7 PO(~) + WI J 
Of particular interest is the average temperature 
used in the calculation. This was chosen because 
the absorption is inversely dependent on the 
three-halves power of the temperature. Since the 
absorption is to be calculated along the path, 
this average temperature is the natural one to 
use. This model includes the “strong band” 
model and the “weak band” model. It may be 
noted at this point that, over limited ranges of 
pressure and optical path length, the absorption 
may be represented as (P+p*L)n [14, 151, but 
since the variation of optical path is large and 
the pressure is rather high, such an approxima- 
tion is not worthwhile in this case. For water 
vapor, the parameters a and ai have been found 
experimentally [9, lo]. These data have been 
extrapolated to T*, = 730”R and 3.22 atm 
according to Appendix A, and resulting values 
are given in Table 1. 

Reduced equation and boundary conditions. 
Now, for the set of discrete bands, the ai and B+ 
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Table 1. Absorption co&?kients for ffeum at 730’R and 
3.22 atmospheres f9] 

i ai WE (cm-l) n 

1 0.657 O-831 
2 1,968 

: 0.134 1.418 3704 5348 

z 0,093 0@4 7246 9091 1 

are made dimensionless by relating them to the 
maximum ai and Bf, respectively. In defining 

fl = attT*) 
“-amax(T*2) 

_ w-*)~ 
hr -B&JTg) 

ff: ,fT*) 
fvw-*) = m, (14) 

the right-hand side of equation (IO) can be written 
as 

am&T3 B,*,,(Q W*, r*, T*) 

where G is defined as 

G =i$I ,& ([H,“‘(T;) - H,(l)@-*)] f;(“’ 

- [Ny’(T*) - HI”(T;)] j-j”’ 

L amfdTL2) i 
If aw, SJ B;MT*‘) 

R*-4n 0 
, 

- Iit( exp [-- 7i(.s*‘, s*)] d.s’ dsz, (15) 

where f’,l) and fp) are the integrals in equation 
(IO), and N is the number of bands constituting 
the spectrum. The function G is the non- 
dimensionalized net absorption of radiation at 
the point specified by co-ordinates (x*, r*)_ The 
turbulent diffusivity can also be nondimensional- 
ized with respect to the maximum value; i.e. let 
e be defined as 

R*/p*c;) + Qh 

(16) 

and introduce 

It can be shown [S] that SP*:Pr* is negligibk, and 

if EP*!Px* is assumed to be small, the equation 
of state becomes p*T* = PIT;. Using tilis 
equation of state and equations (16) and (17) 
gives equation (10) in the form 

Ry ukax 
-* [(k /p*c;) f 

a-7 R,- amax B,‘,< 
- (1% = p*,T;cJJ In (T;/TG) [(k*jp*cp*) f &,as 

A further non-dimensionalization may now be 
made by a scaling of the axiat distance .r*; that 
is, introduce 

dX* [(k*lp*cJ + +mx 
d.rEF.- 

Rf i(kax (19) 
Y 

But, since the maximum value of the eddy 
diffusivity will be much larger than the molecular 
diffusivity k*fp*cp(, z becomes 

“( Eh)max 
== mYdr* 

5 
(30) 

0 

Now, the remaining parameter on the right-hand 
side of equation (18) will be denoted by M, where 

This parameter represents the ratio of the 
absorption and emission of radiation to the 
turbuIent diffusion of energy. Equation (18) may 
now be written as 

= MG (22) 

The boundary condition at L = 0 is that the 
fluid temperature be uniform at a value of T4, so 
that O(0, r) = 0. At r = R:IR”, = p, the 
temperature will be equal to Tf, and at r = 1 the 
temperature wit1 be T;, so that 

qz, p) = 1 

qz, 1) = 0 

Since turbulent convection is quite likely to be 
the dominant mechanism of energy transfer in 
practical situations, it will be assumed that ,li is 
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small. This suggests that 8 be expanded in a 
power series about M = 0: 

Q = 5 Qj(z, r) iW (23) 
I-0 

Since G depends on the temperature, which, in 
turn, depends on M, G can be expanded in a 
Taylor series about &I= 0: 

ac 
G(x, r, 0) = G [M-O + m Jf_o M I 

a”G 

+ a- M=o I 
E+. . . 
2 (24) 

The substitution of these representations for 0 
and G into equation (22) yields 

i a ael 
--- rear r ar ( )I Ill 
+ UC&;& [ 

i a ao2 ( )I re -5 11112 f . . . 

= G(z, r, 00) M f 01 g (x, r, @o) M2 f . . . 

(25) 
Since equation (25) must be valid for all M, the 
following sequence of boundary value problems 
can be formulated: 

(26) 

&(O, r) = 0 Oo(z, p) = 1 Qo(z, 1) = 0 

and 

1 = Gb, r, Qo) ~ (27) 

Ql(0, r) = Ol(z, p) = Q(z, 1) = 0 1 

and 

1 aj-1G 
= 0’-1>! aMI- .pI_o 

@j(O, r> = Qk P> 
= @l(Z, 1) = 0 I j = 2, 3, . . .(28) 

These boundary value problems are linear with 
non-homogeneous (except for 00) equations and 
homogeneous (except for 00) boundary con- 
ditions. 

The velocity profile u(r) is known as a function 
of the radius, while the eddy diffusivity Eh is a 
function of the velocity. Hence, when the eddy 
diffusivity dominates, e is dependent only on the 
velocity. However, near the boundaries, the 
eddy diffusivity vanishes so that the molecular 
diffusivity must be known in order to specify 
e(r). However, the molecular diffusivity can be 
expressed in terms of the temperatures near the 
walls, which are the known boundary conditions 
for the problem. Hence, e is a function of the 
co-ordinates. At this point it will be assumed that 
e is a function only of the radius, that is, that the 
eddy diffusivity is independent of the axial 
co-ordinate even in the thermal entrance region. 
This assumption has been verified experiment- 
ally for flow tubes [6’j. The consistency of this 
assumption can be determined by comparing 
the calculated temperature with the experimental 
temperature. 

Solution for non-absorbing gas. The boundary 
value problem for 00 is that associated with the 
development of the temperature profile in the 
thermal entrance region for a non-absorbing gas 
(as would be expected, since this is the physical 
significance of M = 0). This equation may be 
solved first by subtracting from 00 the solution 
for the fully developed profile, Of,, where 

1 ’ dr 
Qfd = - 

s 
- 

C re(r) 
r 

with 

c_ld’ s re(r> 

(29) 

(30) 

P 

Then, if 0,~ = 00 - Qfd, eqUatiOn (26) be- 
comes 

with boundary conditions 

Qcnt (0, r) = - (Q/d); Qent (z, P> 
= Qent (1, 1) = 0 (31) 
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Now Oent can be determined directly by the 
method of separation of variables; that is, 
represent 0,~ as 

O,,, = $ An exp [- /\~z]&(Y) (32) 
n=1 

where the pairs (Rn, X,) are the characteristic 
pairs defined by the following Sturm-Liouville 
problem : 

&t(p) = Ml) = 0 

and the An are given by 

- t Ofd urRn dr 

An= ‘, 
$ urR2, dr 
P 

(34) 

Hence, a solution has been obtained in terms 
of u and e. They have both been determined 
experimentally [S] for an annulus with radius 
ratio p = 0.2 and are listed in Table 2. The 

Table 2. Non-dimensional velocity profiles and eddy 
diffksivity for an annulus with radius ratio 0.2 at Reynolds 

numbers from 19 000 to 38 000 

I 

r 49 e(r) ’ r 4-) 49 
I 

0.20 0 0169 0.65 0.990 0.941 
0.25 0.765 0.351 0.70 0.980 0.981 
0.30 0.872 0.494 ! 0.75 0.967 1400 
0.35 0.928 0.663 0.80 0.940 0.977 
0.40 0.961 O-805 0.85 0.897 0.93 1 
0.45 0.981 0.865 0.90 0.839 0.815 
o-50 0.993 0.897 0.95 0.741 O-725 
0.55 1400 0.904 I.00 0 0.013 
0.60 0.997 0.916 

method of determining u was by measurement 
using a Pitot-static tube. The values for e were 
obtained from the temperature profiles for the 
calibration runs (with dry air) at three different 
axial positions. From equation (26) it is clear 
that if u and 00 are known experimentally for 
two values of z, then e(r) can be deduced. Then, 
if 00 is known at a third value of z, a second 
e(r) can be determined and compared with the 
first. If these two determinations are the same 

then it is safe to assume that e is independent of 
- Hobvever, because of the difficulty in differenti- -. 
ating experimental data, an alternaG\-e approach 
was taken. In this approach, an e(r) is estimated 
(by differentiation), and then equation (33) is 
solved for the R, with this value of e(r) by 
means of Runge-Kutta numerical integration on 
an electronic computing machine. Since the 
R, are determined up to an arbitrary multipli- 
cative constant, the final requirement placed on 
the R, is 

j! rlrRi dr = C 
P 

for the estimated e(r). Now, the solution for 00 
is 

O. = 0,, + 5 An exp [-h%z]R,(r) (35) 
II = 1 

The O. given by equation (35) is determined by 
using the R, corresponding to the initial 
estimate of e(r) and is compared with the 
experimental values. Now, the estimated e(r) is 
corrected until the calculated temperature agrees 
with the experimental values. This corrected e(r) 

function is given in Table 2 for p = 0.2 and 
corresponding value C is 4.964. The first se\-en 
Rn are listed in Table 3 and plotted in Fig. 1. 

Shown in Fig. 2 is the solution to equation (35) 
for values of z from O-05 to zo using the e(r) in 
Table 1. Also shown in Fig. 2 are the experi- 
mental temperature profiles for a radius ratio of 
0.2 at I = 0.1, 0.135, and 0.170 and for a 
constant maximum velocity. The good agree- 
ment between the calculated values and the 
measured values at one z indicates that the 
correct e has been determined. The good agree- 
ment at three different values of z indicates that 
the value of e(r) is independent of z (at least 
within the relatively small range of : for which 
experimental values were taken). This is in 
agreement with reference 6. 

This same e(r) function can now be used to 
calculate the temperature profile for different 
maximum velocities. The values of z correspond- 
ing to an experimental run for a fixed II;,, can 
now be determined by comparing the profiles 
calculated by using equation (35) to the experi- 
mentally measured profiles. In this way it is 
possible to get a good correlation between 
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I ‘L__l_L_.+l 
L’ 

l&o 0.26 0.36 044 052 060 076 0.84 0.92 IGO 

FIG. 1. First se”encharacteristk functions ofequation(33). 

Table 3. First seven characteristic functions defined by equation (33) 
-- 

r Rl R? R3 R4 RS RI3 R7 

0.20 0 0 0 0 0 0 0 
0.25 1%JO4 4.2801 5.9977 1*7735 9.5699 IO.2887 IO.5752 
0.30 2.7063 5.9130 69821 6.8755 5,2592 I .9968 - 1.5575 
0.35 3.0550 6.0316 5.6234 3.2213 -0.7648 -4.4255 - 6.0266 
0.40 3.2807 5.6324 3.4512 -0.6579 -4.5991 -5.0858 -2.1022 
0.45 34407 4.8648 09665 -3.5313 -4.8445 -1.1140 3.5493 
0.50 3.5512 3.8576 0.1293 -4.5841 -2.1385 3.1705 4.2480 
0.55 3.6254 2.6855 -3GO91 - 3.7933 1.4990 4.2362 0*0780 
0.60 3.6671 1.4866 - 3.9019 - 1.7562 3.7900 1.7063 - 36425 
0.65 3.6825 0.4675 -4.0129 03526 3.9179 - 1.4711 -3.5160 
0.70 3.6784 -0.7246 - 3.3874 2.5854 I.9247 - 3.7597 0.2188 
0.75 3.6507 - 1.7856 - 2.0940 3.6806 - 1.1166 -2.6140 3.4544 
0.80 3.6012 - 2.6387 -0.4508 3.2966 - 3.2906 0.7399 2.5027 
0.85 3.5351 - 3.2576 1.1681 1.8362 - 3.6063 3.4022 - 1.0187 
0.90 3.4028 - 3.8639 3.2778 - 1.2364 - 1.2184 3.3047 -4.1817 
0.95 3-1316 -4.1416 5.0624 -4.9355 3.9705 - 2.8408 1.1641 
1.00 t-l 0 0 0 0 0 0 

u L,, and z for a wide range of z from a series maximum flow velocity, it is possible to estimate 
of calibration runs [g]. Also, by using equation the effect of radiation by calculating 81 and by 
(35) in equation (6), it was found that X> comparing this calculated value with experi- 
corresponds to a value of z from equation (20) mental measurements. 
of 0.05. With e(r) known and with .z given by the Solution.for crbsorbing gas. In order to evaluate 
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Z 

0 0.170 
0 0,135 
A 0.10 

0.2 o-4 O-6 0.8 I.0 
f 

FIG. 2. Non-dimensional temperature profile for a 
non-absorbing gas. 

01 it is necessary to evaluate G(x, r, 00). This 
term can be evaluated when 00 is known, but the 
numerical procedure is complicated. Because of 
this, two approximations were made in order to 
simplify the computation. These are: 

(1) The gas to gas radiation was neglected for 
elements on lines of sight between the element 
under consideration and the inner wall. This is 
valid for the particular geometry considered 
(small inner radius), but would have to be 
checked again under other circumstances. 

(2) In evaluating the absorption integrals 
fi”,f$*), g $2), the temperature was assumed to be 
given by 00(x, r) and to be independent of x. As 
shown in Appendix B, this will give correct 
contributions for elements at axial stations close 
to X. While some error is introduced in evalu- 
ating the contributions from more distant 
axial stations, these contributions are small 
because most of the radiation is absorbed before 
reaching x. 

In Appendix B, it is shown that G may be 
written as 

G = Fbi ($1 ((Hi”[Oo(.Y. ,O)] 
- 
i=l 

- H~“[O(.r, r)] > f;“(,r, r) 

-- (H;yO(x, r)] - H)“‘[O(s, l)] ) f>.f)(.r, r) 

- ‘$‘(x, r)) (76: 

The number of bands IV has been chosen as 6 for 
water vapor. The fill, fy), and gj”’ are derived in 
Appendix B and can be evaluated by numerical 
integration. However, before numerical calcula- 
tions for G can be made, it is necessary to 
determine the intensity of radiation at the 
surfaces. 

Calculation of surface intensity. If the walls are 
black, then the surface intensity is determined 
by the temperature of the wall, but if the walls 
are not black, the reflected energy must be 
considered as part of the surface intensity. This 
may be accomplished by considering the follou- 
ing equations for a single band and a known 
temperature T* : 

Hi” = Elhi(P) -f- (1 - E&l;” (37) 

where Z-Z!” is the intensity of surface one (the 
inner cylinder), and Jil) is the intensity impinging 
on surface one. Also, 

Hj”’ = E&(l) f (1 - EZ)Ji” (3) 

where Hi?) is the intensity of surface two (the 
outer cylinder), andJy) is the intensity impinging 
on surface two. The intensity impinging on 
surface one may be written as 

Jj’) = F;?‘H;?’ + Gi”( p) (39) 

where Fi”) is the fraction of intensity from surface 
two that strikes surface one, and G:“(p) is the 
intensity striking surface one as a result of the 
emission of the gas. Finally, the intensity im- 
pinging on surface two is 

Jt”’ = H;“F;” + G:“(l) + Hj”F;,“’ (40) 

where Fjl’ is the fraction of intensity H’,” that 
strikes surface two, Fil) is fraction of intensity 
Hi” that strikes surface two (itself), and Gj”(l) is 
the emission of the gas that strikes surface two. 
This gives four equations and four unknowns, 
which may be written as 
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1 0 

0 1 

0 _F;“’ 
(41) 

_F;jl, -_F'I"' 

Taking the inverse of this matrix yields equation (42): 

1 - (1 - hi) F:s) (1 - cl) Fi”’ (1 - Ci)[l - (1 - ~2) Fc,d)] (1 - +) (1 - Ed) Ff”’ 

1 (1 - ~2) F;” 1 (1 - ~1) (1 - c2) F;” (1 - Cl) 

nr (1 - c2) F;“F:” F$“’ [I - (1 - Q)F:“‘] (I - c2) F:” 

F;Il) (1 - q) F$“F’,?’ + Fp’ (1 - q) F(Il’ 1 

Cl hi(P) HI” 

E2 h(l) Hi2’ 
X ( )O Gj2’(p) = JI” 

G’,“(l) Ji2’ 

Ai = 1 - (1 - 4 [FI”’ + (1 - E1) F:“F:“‘] 

(42) 

By means of this equation the surface intensities 
are given in terms of the surface temperatures 
and emissivities and also in terms of the tempera- 
tures of the medium and its emission. It is now 
possible to evaluate G numerically for the 
pertinent conditions. The function G has been 
calculated for steam flowing in an annulus with 
radius ratio O-2 and is plotted in Fig. 3 for 
z = O-17, at an inner wall temperature of 2OOO”R 
and a pressure 3.22 atm. The net absorption is 
negative near the inner wall-because the gas 
has been heated and is now emitting and is 
positive for the rest of the region. 

Calculation of jluid temperature. The solution 
to the boundary value problem for 81 may now 
be outlined, since G(z, r, @II) has been determined 
(numerically for some special cases). Since the 
R,, have been defined, a solution utilizing them 
will be found. First, expand G(z, r,Oo) in a series 
of the characteristic functions R, of the Sturm- 
Liouville problem as follows : 

G(z, r, 80) = u(r) g @&)R&> (43) 
a=1 

9 VA 

-60 

-60 

-90 0.2 0.4 lh IQ 
I 

FIG. 3. Absorption of radiation for TI = 2OWR and 
P = 3.22 atm. 
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It is a consequence 
pansions that 

LESTER D. 

of the theory of such ex- 

1 

G(z, r) Rn(r)r dr (44) 

P 

and are known functions of -_ (which is treated 
as a parameter in the expansion). Again using 
the Separation of Variables techniques 0~ is 
written as 

@I(:, r) = 5 X,(z) Rn(r) (45) 
n=t 

where the Xn are to be determined from the 
differential equation. Notice that the boundary 
conditions on the inner and outer cylinders are 
satisfied directly. Equations (33), (44), and (45) 
may be substituted into equation (27), which 
becomes 

Rn = 0 (46) 
n=1 

with boundary condition Xn(0) = 0. Because the 
R,‘ are linearly independent, their coefficients 
must vanish, i.e. 

z + A$& = Dn (47) 

Hence, the Xn may be determined as 

X,(z) = exp [-Xiz] Jf exp [h:Q Q&(E) df (48) 
0 

or, substituting for 0% 
1 z 

Xn = Aexp [-hfz] 
ss 

R&) 
P 0 

exp [Xzf] C(f, r) dfr dr (49) 

NlCHOLS 

Thus, 01 is specified in terms of G. 
In order to calculate X. it is necessary TV, 

know G as a function of: from zero to the point 
of interest. Hovvever, G requires extensil-e 
calculation at each Z. Consequently, an approsi- 
mation for G is desirable in order to evaluate 
equation (49). Because the integrand in equation 
(49) is weighted more heavily for 5 near 2, G(:. r) 

can here be approximated by G(z, r). With this 
approximation, the X,& become 

For conditions of z = 0.17, T; = 2OOO’R. 
and P = 3.22 atm, the an are given in Table -1. 
The 01 is found to be of the same order of 
magnitude as @a, so that M must be small com- 
pared to 1 in order that equation (23) might be 
expected to converge. 

This same procedure can be followed in 
obtaining the 01 forj greater than 1. An estimate 
of the magnitude of 02 has been made for the 
case considered herein. It was found that the 
right-hand side of equation (27) was of the same 
order of magnitude as the right-hand side of 
equation (28) for 01. Consequently, 0~ is the 
same order of magnitude as 01, so that if M is 
small compared to 1, 0s and higher terms can be 
neglected. For this situation 

0 = 00 f ‘1101 

Heat transferred to gas 

(51) 

The amount of energy transferred to the gas, 
as a result of both convection-conduction and 
radiation, may be calculated by multiplying the 
first term on the left-hand side of equation (7) by 
2m-* dr* dx* and integrating from RT to Rl and 
from 0 to x*. This yields 

Table 4. Expansion coeficients and characteristic aalues 

h 1 2 3 4 5 6 7 

‘L, 1,5484 5.3654 8.8428 12.1094 15,4167 18.6832 21.8587 
A.2 2.3975 28.7877 78.1944 146.6376 237.674 349.157 477.804 
---An 0.1256 0.0253 @0135 0.0098 O+OSO 0GX-l 0.0053 
BII 0.8929 om37 0.0079 OmOl OGO25 omO3 0+012 
CR 7.1077 0.1456 0.5864 0.0760 0.3165 0.0555 0.2223 
D* 0.0982 OGO46 00363 om15 -0mOl - OGJJ5 -0dxO4 
@” (0.17) 3.2925 0.509 I -06088 - I .2863 - I .0688 - I .I162 - 0.9900 
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Q* zzz 2~;c~p~T$i”,,,R4’ In ;I 4(z) (52) 
2 

where 

q(z) = “s r&(2, f) dr 
P 

(53) 

For a non-absorbing gas, this becomes 

q(z) = J? ru@o(z, r) dr = j: rudfd dr 
P P 

+ 2 Al& exp [ - +] j: ru Rm dr (54) 
fS=l P 

and if p = O-2 

q(z) = 0.18378 +mtIBn exp [-Xzr] (55) 

where the Bn are given in Table 4. Hence, if 
Qco is defined as 

then for Xjz >, 5 equations (55) and (56) may be 
substituted into equation (52) which becomes: 

Q -ffr=sl 
Q, 

- Bl exp[-A+] 

For an absorbing gas, 

q(z) = j- ru(@o f MQ1) dr 
P 

which, for small A4 and Air 2 5, can be substi- 
tuted into equation (52) which becomes: 

QahJ = Qaa + l.O9609hl&CtQ, (p = 0.2) 

(57) 

where Ct and Dr are given in Table 4. 

RESULTS AND DISCUSSION 

The procedures developed in the preceding 
sections permit calculations of the effect of 
radiation on temperature profiles in channels for 
absorbing and non-absorbing gases. As an 
indication of the usefulness of the methods 
presented, analytical and experimental results 
are compared in Fig. 4 for the previously 
mentioned case of steam flowing in an annulus. 
The solid lines in Fig. 4 show temperature 

o STEAM 
A AIR 

(01 

0-8 

0.6 

0 

0.4 

0.2 

52 o-4 O-6 O-8 f-0 
I 

FIG 4(a). Effect of radiation on temperature profile with 
7-l = 2OOO”R. 

0.6 

0 
o STEAM 

o-4 n AIR 

CALCULATED 

0.2 

0 
0.2 o-4 0.6 0.8 I.0 

I 

FIG. 4(b). Effect of radiation on temperature profile with 
7-l = 2OOO”R. 

profiles that are calculated by using velocity 
profiles and eddy diffusivities determined from 
experiments with air. For a single run at 1.0 atm 
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the results may be seen in Fig. 4(a), and for a 
single run at 3.22 atm, where *CI = 0.034, the 
results appear in Fig. 4(b). For the low pressure 
[Fig. 4(a)] no effect of absorption is observed. 
Both analytical and experimental datashown indi- 
cate agreement between air and low pressure 
steam. The effect of increasing the pressure, 
thereby increasing the opacity (and M) is to 
increase the temperature by a maximum of 7 
per cent, and to increase the heat transferred by 
4 per cent. The measured temperature difference 
between steam at 3.22 atm pressure and air is 
compared with the calculated difference in Fig. 5. 

l 

I 
I 

I I I I 

0.4 0.6 0.0 I.0 
I 

FIG. 5. Measured temperature difference between 
absorbing medium (steam at rr = 2OOO”R and 

P = 3.22 atm) and air. 

The agreement is reasonable in light of a possible 
10 degree error in determining the temperature 
difference. Unfortunately, no more experimental 
data were taken, so that a statistical error analysis 
could not be made. 

For the steam conditions considered, the 
radiation effect will manifest itself as an increase 
in the temperature at any point because the 
absorption at that point increases faster with M 
than the emission. For comparable conditions, 
this result is in agreement with reference 4. 

The heat transferred to the gas was calculated 
from the solutions for the temperature profile. 
The effect of radiation is to increase the heat 
transferred to the gas. For the conditions in the 
experiment the effect was only of the order of 
4 per cent. 

CONCLUDING REMARKS 

A study has been made of the turbulent 
convection and thermal radiation absorption 
phenomena for a non-gray gas with variable _. 

NICHOLS 

density in the thermal entrance region of .m 
annulus. The techniques developed for this 
special problem can be applied to more gener:ll 
problems as long as the radiation interaction 
parameter M is small. This parameter, which 
expresses the amount of radiation absorption 
compared to the turbulent convection, must re- 
main small because the solution for an absorbing 
gas was obtained by perturbing the solution to 
the equivalent problem for a non-absorbing pJs 
in powers of M. 

In order to solve the thermal entrance problem 
for a non-absorbing gas both the velocity profile 
and the eddy diffusivity have to be known. For 
the particular analysis presented herein they were 
determined experimentally. For the interacting 
gas the absorption properties must be known. In 
this analysis they were obtained by adapting the 
experimental values for isothermal volumes for 
use in non-isothermal volumes by means of an 
appropriate average temperature. However. if 
the spectral data were not available, the medium 
could be considered a gray gas and solutions 
could be obtained in the same manner. 

Analytical and experimental results were 
compared for the case of water vapor flowing 
at Reynolds numbers near 20 000 at a pressure of 
3.22 atm with an inner wall temperature of 
2000”R. The radius ratio for the annulus vvas 
0.2. The temperature profile was measured at a 
point 15 diameters downstream of the start of 
the heated section. For these conditions, M is 
0.034, and the requirements of the analysis are 
fulfilled. For these conditions, the temperature is 
increased by 7 per cent at the maximum, and the 
heat transferred is increased by 4 per cent due to 
absorption. The experimental measurements for 
the temperature profile and the heat transferred 
agree well with the calculated values. 
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APPENDIX A 

Determination of Band Absorption 
The representation of the band absorption by 

the water vapor will be determined by use of the 
statistical model; that is, the integral 

~,~CSW,/‘?, 

J K:P* B ,(T*) exp [- 7 Js*‘, s*)] dw 

W‘ - CW,, 2) 
(Al) 

will be replaced by 

Kfp*&,(T*) exp [-4s *‘, s*)] AW 

where the optical path length TL must be ex- 

pressed in terms of the physical properties of 
water vapor as well as the physical distance. On 
the basis of the statistical model [9] the ri can be 
expressed as 

arR.;P* S* 
nw 2x* (s - s’)] 642) 

where 

f(7) = 7 e-7 V0(d + Wdl 
This representation for the optical path is chosen 
such that for the “weak band” approximation 
[i.e. f(T) M 71 that the it will approach 

aTR’,P*(s - s’)/Aw = iGp*RG(s - s’). 

This is the definition of a*, and is known 
experimentally. However, the temperature of the 
medium is not uniform, and an extension of the 
method will be made wherein an average 
temperature will be used. Since the K:P* is 
inversely proportional to the three halves 
power of temperature, the natural average 
temperature to use is the one that will yield the 
correct value for the average absorption, i.e. 

8’ 

1 1 
e=s* _ 

S( 1 
&, ds*” 643) 

8.’ 

where 

+ 
2 

Now, the dependence of 

2rrb* 
O=S* 

and 
afRGP* 

01 =- 
AU 

on temperature must be determined. For the 
collision-broadened bands, it can be shown [9] 
that 

and 

n(T*, P*) = atr;, P*)1/(Tave) 644) 

u*(T*, P*) = ut(TG, P*)T$ W) 

so that 

Tl(S’, s) = a(TI,, P*)~(TEw)f 
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where E’ = s’js. Hence, when the temperature 
distribution is given, then the absorption pro- 
perties are known. This representation includes 
both the “weak band” approximation [f(7) sz 71 
and the “strong band” approximation 

The method is versatile in the sense that an 
extrapolation to different pressures may be 
estimated on the basis of individual band 
absorption data ]lOl. On the basis of this 
extrapolation the dependence of the absorption 
band on pressure is given for water vapor as 

a(r;, P*) = n(7-*,, P”o) $J”s3s (A7) 

and 

&(7-H, P*) = aa(TH, P”o) ( ,),.1E5 (A8) - 
0 

where the reference pressure Pl is 1 atm. Now 
it is possible to determine the absorption 
quantities for water vapor at any temperature and 
pressure in terms of the absorption quantities at 
the reference conditions. For water vapor at 
3.22 atm and 730’R these quantities are 
presented in Table 2. 

APPENDIX B 

Emlrmtion of Radiation Interaction Integrals 
The function G as given in equation (15) must 

be written in terms of the variables used in the 
analysis, that is, (x, r, 0). To do this, first, break 
the integral over the entire solid angle into two 
sections (Fig. 6) so that G becomes 

G z G(I) + Gc”, 

where 

- MT*)] exp [--T:~$(: ;, sl) dt’} 

GW = 2 fi fii 

I. rlh-‘(p’l) 

7 JJ _x 

i=l 0 0 

J[hi(TT) - hi(T*)] exp [-T(~)](O, s) 

f ai(T*,, P*) j T(tJ[hi(T*') 

0 

(a) From the inner cylinder to the gas. 

(b) 

(b) Gas to gas radiation for shaded region in part (a). 

FIG. 6. Co-ordinate sketches to determine radiation flux. 

and 

GW = 2 
7 JJ I3 81 L &’ {[hl(z-2) -G I=1 0 0 

- MT;)] exp [-- .T!“](O, ~2) 

-t- a.i(T*,, P*> J’ Td?i(T*‘) 

- W*)] exp [---T~~)(s;, s&J d&‘} 

(r cos 81 - p) 
s; 

dt4 d.vt 031) 
(1 - rcosb) 

s; 
-- d9e dxe 
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(c) From the outer cylinder to the gas. 

X 

this is not the case, and these equations have to 
be used with no further simplification. But, for 
steam in the entrance region of an annulus, it 
can be shown that the gas to gas radiation is 
negligible in G(r). This is accomplished by 
evaluating the integral using the temperature 
profile given by 00 and by comparing this term 
with the wall to gas term. 

Another simplification can be made by con- 
sidering the axial temperature variation of the 
temperature about a given .Y. It can be shown 
[8] that the integral over a line from a given point 
in the flow field to another point can be evaluated 
with small error by considering that the tempera- 
ture profile at the first point be extended over the 
entire length of the flow region. 

The functions G(r) and G(s) may now be 
evaluated once a temperature profile is specified. 
If the following integrals are defined 

5 cos-‘p,t 

fi”(x, r> = f 1 J exp [-T~(o, sr)~ 

P(‘COS 81 - P) 
m - 2rp cos 01 + p2)3/2 

d61 d,vl (B3) 

s cc%-‘(p’- d/[(l -pq(r*-_py/r) 

fy)(x, r) = a J J II I) 
exp [ - T(~~)(O, ss)] 

(I - r cos 0,) 

(yi + r2 - 2rp COS 82 f p2)3’2 
dt’?. dyz 

034) 

where yr = xl - x and ye = x2 - x, and 

s Cos-‘(p’~[(l-pp’~(r’-p’)~/r; 1 

gj"(x, r) = z ai J J J TV) ^ ̂  0 

{hr[T*(r) - hl;T*if)l> 
(d) Gas to gas radiation for shaded region in part (c). exp [-r~2)(~;, ~$1 d5.i 

FIG. 6. Co-ordinate sketches to determine radiation flux. (1 - r cos 0,) 

y; + r? - 2rp cos e2 f p2 
d8r dyl ( B5) 

and the ‘I are given by equation (A6). 
The G(l) and Gt2) functions are greatly simpli- G can be written as shown in equation (36). 

fied if ar(T2, P*) is small. Then the gas to gas Numerical results for steam with c = 2OOO”R 
radiation can be neglected. However, in general, and p* = 3.22 atm are presented in Figs. 7 to 9. 

KM.-2Q 
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FIG. I. Absorption integrals with I1 = 2OOO”R and 
P = 3.22 atm. 

FIG. 8. Absorption integrals with TI = 2OOO”R and 
P = 3.22 atm. 

APPENDIX C 

Evaluation of Radiation Flux Integrals 
The terms representing the intensity impinging 

on a surface may be obtained by an integration 
over the appropriate surface as follows: 

NICHOLS 

,lr,~l~!~~~ k 

0 0.2 0.4 0.6 0.6 I.0 

FIG. 9. Non-dimensional gas emission integrals defined in 
equation (Bs> for TI = 2OOO’R and P = 3.22 atm. 

s cos-‘p 

pp = 4 
r JJ 

exp [- T~“)(O, ~$1 

0 0 
(1 - P cos wcos 6 - P> d0 dy 

(x2 + 1 - 2p cos e + p’)? ’ 

5 cm-'P 

F$2) = 4 
Ti JJ exp [- +)(O, 41 

0 0 
0 - P ~0s was 0 - ;), p do dy 

(9 + 1 - 2p cos tJ + p->’ I 

s cc+-‘(2p’- 1) 

Fy’ = f2 
5. JJ exp [+)(O, sz)] 

0 0 
(1 - cos 0)? 

[x2 + 2(1 - cos e>l’ 

5 m-‘p 1 

(32) = at t SJ J T(r”)h(r”) 
T 

0 0 0 

exp [- i(i2)(0, s”)] d5” 

x 
(1 - p cos e)(cos 0 - p) d8 dx 

(x” + 1 - 2p cos e -/- p”)3’2 

(Cl) 

G9 

(C3) 

(C4) 
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T(r”)h@‘) exp [ - +)(O, s”)] dt” x (1 - cos 8)2 de dx 

[x2 + 2(1 - cos e)p’r 
0 0 0 

3 cc+-‘p I 
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Rbumi-L’influence de l’absorption de rayonnement sur le profil de temperature et le transport de 
chaleur darts un milieu absorbant s’&coulant darts un tuyau annulaire. a ttC examirk analytiquement. 

Darts l’analyse, un hcoulemeat turbulent d’un gaz non gris avec une deasiti variable et des co- 
efficients d’absorption dependant de la temperature est considtre. Les rbultats de l’analyse sont com- 
pa& avec ceux dune experience effect&e avec de la vapeur d’eau s%coulant a des nombres de 
Reynolds voisins de 20 000 a des pressions de 1 et 3,22 atm darts un tuyau annulaire avec un rapport 
de rayons de 0,2. Le resultat th&orique est en accord avec le resultat experimental que pour une 
temphrature de la paroi interieure de 1110°K et une pression de 3,22 atm, l’absorption du rayonnement 
augmente lCg&ement la temperature (environ de 7%). Ce rtsultat est Cgalement en accord qualitatif 

avec l’analyse de Viskanta pour un fluide au repos entre deux plaques paralleles. 

Zusammenfaastmg-Der Einfluss der Strahlungsabsorption auf das Temperaturprofil und den Wlrme- 
iibergang an ein absorbierendes Medium, welches in einem Ringrohr stromt, wurde analytisch 
untersucht. 

In der Analyse werden ein turbulenter, nicht-grauer Gasstrom mit variabler Dichte und temperatur- 
abhiingige Absorptionskoeliizienten beriicksichtigt. Die Ergebnisse der Analyse werden mit denen eines 
Versuches verglichen, der mit Dampf durchgeftlhrt wurde, welcher bei Reynoldszahlen nahe 20 000 bei 
Drucken von 1.0 vis 3,22 atm in einen Ringrohr vom Radienverhgltnis 0,2 striimt. Das analytische 
Ergebnis stimmt mit dem Versuchsergebnis dahingehend t&rein, dass fur eine Temperatur der 
Innenwand von 837°C und einem Druck von 3,22 atm die Strahlungsabsorption die Temperatur 
geringfiigig erhiiht (ungefrihr 7 %). Dieses Ergebnis steht such in qualitativer Ubereinstimmung mit 
den Ergebnissen der Analyse von Viskanta fiir eine stilistehende Flilssigkeit in einer planparallelen 

Geometrie. 

_.iEHoTaqIirr--B pa6oTe AaHo aHam!TmecKoe mcne~oBaK~~e BJIHRHHR nornoqeHm ~anyw- 

em Ha npo@fnb TemepaTyp M nepeHoc Tenna K no~oKy nornouamouletl cpeiln B KaHa;re. 

~H%'lM3MpOBaJlCUTyp6yJleHTAHbl~ llpO3paYHbdt ra3OBbItt IIOTOK C IlepeMeHHOit llJIOTHOCTbI0 U 

3aBKCRWiMK OT TeMllepaTypM KO3@@IqKeHTaMK llOrJIO~eHWi.Pe3yJIbTaTbl3HaJIH33 CpaBHII- 

BWIlICb C pe3yJIbTaTaXH3KCtIepHMeHTWIbHOrO ElCCJIe~OBaHMfi Te4eHHR iKEIRKOCTP B KaHaXe C 

COOTHOUIeHMeM pa~llyCOB 0,2 npl1 WCXXPefiHOJIb~Ca -20 000 M ~asnemtax 1 ,O M 3,22 arx . 
Pe3yJIbTaT aHaJIH33 COI'JIaCyeTCf? C 3KCllepMMeHTWIbHHY pe3yJIbTaTOM: &JIJJ BHyTpeHHen 

TemepaTypn cTeHKM B 2OOO”R H gasrtettmt B 3,22 aTM nornomesrre rranyresnn II~ESBOAXT K 

He3H3~I~Te~bHOMyyBeJIY1~eHHH)Tel~epaTypbI(OKO;rO~o~).~TOTpe3y;IbTaTTaKHie Ka'ieCTBeH- 

110 COrZiCyeTCK C pe3ynbTaTaSIK 3HaJUI33 BXCKaHTa AJIK Kp?lTIWeCKOrO nOTOKa ItpK TIJIOCKO- 

napamenbaott reoMeTprwf. 


